
Formal Analysisof a SpaceCraft Controller using SPIN

KlausHavelund, MikeLowryandJohnPenix

NASA AmesResearchCenter
Moffett Field,California,USA

Email:
�
havelund,lowry,jpenix� @ptolemy.arc.nasa.gov

URL: http://ic-www.arc.nasa.gov/ic/projects/amphion

Abstract

This paperdocumentsan applicationof the finite state
model checker SPIN to formally verify a multi–threaded
plan executionprogramminglanguage. The plan execu-
tion languageis onecomponentof NASA’sNew Millennium
RemoteAgent, an artificial intelligencebasedspacecraft
control systemarchitecture that is scheduledto launch in
Octoberof 1998as part of the DEEP SPACE 1 missionto
Mars. The language is concretelynamedESL (Executive
SupportLanguage) and is basicallya language designed
to supporttheconstructionof reactivecontrol mechanisms
for autonomousrobotsandspacecrafts. It offersadvanced
control constructsfor managing interacting parallel goal-
and-eventdriven processes,and is currently implemented
asanextensionto a multi-threadedCOMMON L ISP. A total
of � errors were in fact identified, � of which were impor-
tant. Thisis regardedasa verysuccessfulresult.According
to theRemoteAgentprogrammingteamtheeffort hashada
major impact,locatingerrors thatwouldprobablynothave
beenlocatedotherwiseandidentifyinga majordesignflaw.
Thework additionallymotivatedtheintroductionof proce-
dural abstractionin termsof inline proceduresin SPIN.

1 Intr oduction

SPIN [7] is averificationsystemthatsupportsthedesign
and verification of finite stateasynchronousprocesssys-
tems.Programsareformulatedin the PROMELA program-
ming language,which is quite similar to an ordinarypro-
gramminglanguage,except for certain non-deterministic
specificationorientedconstructs.Processescommunicate
eithervia sharedvariablesor via messagepassingthrough
buffered channels. Propertiesto be verified are statedin
thelineartemporallogic LTL. TheSPIN modelchecker can

automaticallydeterminewhetheraprogramsatisfiesaprop-
erty, andin casethepropertydoesnothold,anerrortraceis
generated.

Thispaperdocumentsanapplicationof SPIN to formally
verify a multi–threadedplan executionprogramminglan-
guage(a library really). The plan executionlanguageis
onecomponentof NASA’sNew Millennium RemoteAgent
(RA) [9], anartificial intelligencebasedspacecraftcontrol
systemarchitecturethat is scheduledto launchin October
of 1998 as part of the DEEP SPACE 1 mission to Mars.
The languageis concretelynamedESL (Executive Sup-
portLanguage)andis basicallyalanguagedesignedto sup-
port theconstructionof reactivecontrolmechanismsfor au-
tonomousrobotsandspacecrafts.It offersadvancedcontrol
constructsfor managinginteractingparallelgoal-and-event
drivenprocesses,andis currentlyimplementedasanexten-
sionto a multi-threadedCOMMON L ISP.

ESL is used to program the RA Executive, a sub-
componentof theRA, responsiblefor executingjobssafely
onboard.To analyzea language like ESL, which is generic
in its nature,we have setup a specialsituationcalledthe
model– reallyasmallexampleRA Executive– with afixed
numberof tasksall usingconstructsof the language,and
thenobservedwhetherthis modelsatisfiesvariousdesired
properties.Theeffort hasconsistedof handtranslatingparts
of the L ISP codefor ESL into the PROMELA languageof
SPIN. A total of � errorshave in factbeenidentified, � of
which areimportant.This is regardedasa very successful
result. Accordingto the RA programmingteamthe effort
hashada major impact, locatingerrorsthat would proba-
bly nothavebeenlocatedotherwiseandidentifyingamajor
designflaw not yet resolvedat the time of writing our first
report[4].

Section2 containsan informal descriptionof the RA
Executive, while section3 describesits formalization in
PROMELA. Section4 presentsthe verification resultsby
first statingthe propertiesto be verified, and then by de-

scribingtheerrorsfoundby applyingthemodelchecker to
themodelandtheseproperties.Eacherror is describedby
anerrortraceleadingfrom theinitial systemstateto a state
that breaksthe particularpropertybeingverified. Finally,
sections5 and6 containtheRA programmingteam’s eval-
uationof theproject,andourown conclusionsrespectively.
Our own conclusionsconcernissuessuchas PROMELA’s
capabilitiesseenasa specificationnotation,andtool sup-
port for modelbuilding.

Acknowledgments

We would like to thankErannGat, who hasprogrammed
ESL, for his useful responsesto our error reports,andfor
providing thebasiccontentsof theevaluationin section5.
Whenweoccasionallyreferto theRAprogrammingteam’s
responseto our work, it is his responsethat is referredto.
Wealsowantto thankRonKeesingandBarney Pellwhoare
membersof the RA programmingteam. Their comments
weremorerelatedto explaining the modelandsuggesting
propertiesto be verified. Finally, we have had an ongo-
ing usefulemailconversationwith SPIN’s designer, Gerard
Holzmann. A resultof this communicationwasthe intro-
ductionof “inline” proceduresin PROMELA.

2 Informal Description of the RA Executive

In this section,we give an informal descriptionof the
RA Executive. After anoverview follows a descriptionof
thedatatypesandtheprocessesof thesystem.

2.1 Overview

TheRA Executive,Figure1, is designedto supportsafe
executionof softwarecontrolledtaskson boardthe space
craft. A taskmayfor examplebeto run andsurvey a cam-
era.A taskoftenrequiresspecificpropertiestoholdin order
to executecorrectly. For example,the camera–surveying
taskmayrequirethecamerato beturnedonthroughouttask
execution.Whenataskis started(dynamically),it first tries
to achievethepropertiesonwhichit depends;whereafterit
startsperformingits mainfunction. Thecamera–surveying
taskwill for exampletry to turn on thecamerabeforerun-
ningthecamera.Propertiesmay, however, beunexpectedly
broken(e.g.cameramaybeturnedoff) andtasksdepending
onsuchbrokenpropertiesmustthenbe interrupted.

To simplify the programmingof the individual tasks,
the RA Executive modelsthe spacecraftdevices in terms
of the variouspropertiesthat they may have, and stores
thesein a database. The executive providesmechanisms
for both achieving and maintaining theseproperties,and

A

B

C

Z

10

ON

0

OFF
.

.

.

.

.

Interrupt
Task

Maintain Properties
Daemon

Subscribe

Update

Database

Property LocksTasks

Spacecraft

Commands
Control

Monitors
Achieve
Property

Event
Lock

Event

Figure 1. Remote Agent Executive

useslocks to prevent taskswith incompatiblepropertyre-
questsfromexecutingconcurrently. Executingconcurrently
with thetasksis a “maintain properties”daemonthatmon-
itors the databaserepresentingthe stateof the spacecraft.
If thereis an inconsistencybetweenthe databaseand the
locks– meaningthata lockedpropertyno longerholdsin
thedatabase– thedaemonsuspendsall taskssubscribedto
the propertywhile someaction is taken to re-achieve the
property. The daemonis normally inactive unlesscertain
eventshappen,suchasa changeof thedatabaseor thelock
table.

TheExecutivepermitsvariousachievemethodsto beas-
sociatedwith a property. Then, whena taskmakesa re-
questfor a propertyto beachieved,theExecutive calls the
achieve methodthat is appropriatefor the currentstateof
thesystem.This aspectwill, however, not be subjectedto
verification,andhencewe shall downplay it. Instead,we
shallregardthetasksasbeingableto achievepropertiesdi-
rectly themselves.

2.2 Data Types

The Properties

A propertydescribessomestateof thespacecraft. In terms
of programmingjargon, it basicallystatesthat somevari-
able,calledthe propertyname, hassomevalue,calledthe
propertyvalue. For example,thefollowing is a property:

CAMERA is ON

It statesthat the propertynameCAMERA hastheproperty
valueON. Hence,a property � is a pairing of a property
name��� anda propertyvalue��� : �
	��
����������� . Theprop-
ertyabovecanbewrittenas(CAMERA,ON).

2

The Database

The stateof the spacecraft is constantlymonitored,and
storedin adatabase.Sincethecurrentstatecanberegarded
asthe setof propertiesthat currentlyhold, the databaseis
basicallya setof suchproperties.

The Property Lock Table

As mentioned,a taskcanlock a propertyto preventother
tasksrequiringincompatiblepropertiesfromexecutingcon-
currently. Two properties ����	 �
������������� and ����	
�
������������� are incompatible,if they have the sameprop-
erty name(���) but differentpropertyvalues(�������	������).
Thepropertylock tablecontainsthosepropertiesthathave
beenlocked. In addition, it containsinformationfor each
propertyaboutwhich taskssubscribeto it (rely on it) and
whetherit hasbeenachievedor not. That is, the property
lock tablecanberegardedasa setof locks,wherea lock is
a triple of theform: �
� �"!$#�%�!$&('*)+%-,*'�!��/.0&�1�)2,$�0,�30� � .

If there is an inconsistency betweenthe databaseand
the locks, thedaemonsuspendsall taskssubscribedto the
property. An inconsistency occursif thelock tablecontains
a lock 45	6�
� �"!$#�%7�/89'�#:,�� with a property � that hasbeen
achieved(achievedfield is 89'�#:,) but is not in thedatabase.

The Events

Whenever the lock tableor thedatabaseis changed,this is
signaledto thedaemonsothat it canexaminetherenewed
systemstate. In general,applicationtasksmay also wait
for sucheventsto happenasdescribedbelow. For this pur-
pose,event lists are introduced,one for eachinstanceof
event: SNARF EVENT (representinga changeof the lock
table – to snarf is implementersjargon for to lock) and
MEMORY EVENT (representinga changeof thedatabase).
Any process(taskor daemon)wantingto wait for anevent
to happencallsa wait procedure,which hooksup thepro-
cessto the correspondinglist. Whenever changeshappen
to thesedatastructures,the correspondingevent lists are
signaled,via thesignalprocedure,resultingin thewaiting
processesbeingrestarted- for examplethedaemon.

2.3 Processes

The Tasks

Beforeataskexecutesits mainjob, it will try to achievethe
propertiesthat theexecutiondependson. First, however, it
will lock the propertiesin the lock table– this activity is
;
Thefigureonly shows thepropertiesof thelock table.

calledsnarfingby implementers.Thesnarfingof aproperty
can,however, only succeedif it is compatiblewith theex-
isting locks,andin caseit’snot, thetaskis aborted.If there
arenot conflicting locks, the taskwill createthe lock, if it
is not alreadythere. Note that someother taskmay have
locked theexactsamepropertyalready, andthis is not de-
fined asa conflict. If it succeeds,the taskalsoputs itself
into thesubscriberslist of thelock, indicatingthatnow this
taskdependson thisproperty.

Thecreatorof a lock is calledthe owner, in contrastto
tasksthatsubscribelater to thesameproperty. Theowner
is responsiblefor achieving the property, resultingin the
databasebeingupdated.Uponsuccessfulachievement,the
achievedfield in thelock is setto 89'�#�, . If theachievement
fails, the task is aborted. Other tasksthat subscribelater
thantheownermustwait for theownerto achievetheprop-
erty. Thisis donebysimplywaitingfor aMEMORY EVENT

which successfullyachievesthe property. Hence,the wait
proceduretakesa propertyasargumentin additionto the
eventto bewaitedfor.

Oncea task hasfirst snarfedand then achieved its re-
quiredproperties,it executesits main job, relying on the
propertiesto bemaintainedthroughoutjob execution.

Beforea taskterminates,it releasesits locks. That is, it
removesitself fromthesubscriberslist, andin casethisthen
becomesempty(no othersubscribers),it removesthe lock
completely. In casethereare other subscribers,the lock
mustof coursebemaintained.

The “Maintain Properties” Daemon

The purposeof this daemonis to guaranteethat achieved
propertiesaremaintainedwhile subscribingtasksareexe-
cuting. A onceachieved propertyin the propertylock ta-
ble is said to be maintainedas long as it is containedin
the database(and henceis a propertyof the spacecraft).
Hence,from theperspectiveof a task,themaintainedprop-
ertiesare invariantswhile the task is executing– and the
taskis abortedby thedaemonif not.

Thedaemonis normallyin “sleeping”mode,waiting for
anevent thatmodifiesthedatabase(MEMORY EVENT) or
the property lock table (SNARF EVENT). This is imple-
mentedby letting the daemonwait in the corresponding
event lists. Oncestarted,it examinesall locks in theprop-
erty lock table,andfor eachlock wheretheachievedfield
is 89'�#�, , it checkswhetherthe propertyis containedin the
database.If the property is not in the databaseall tasks
in the lock’s subscriberslist areinterrupted,anda recover-
ing procedureis initiated which will re-achieve the prop-
erty. After having examinedall locks, the daemongoes
into sleepagainby waiting for anotherMEMORY EVENT

or SNARF EVENT.

3

3 Formalization in PROMELA

In this sectionwe presentthe PROMELA modelof the
RA Executive. Thebasicdatatypeof L ISP is thatof lists,
andwe thereforebegin ourexpositionby outlininghow we
have modeledlists in PROMELA. Thenthepresentationis
dividedintosubsectionscorrespondingto thefollowing top-
ics: thestatespace(constants,typesandglobalvariables),
the operationson events,the tasks,the daemon,the envi-
ronmentthatmayintroduceviolations,andfinally asection
explaininghow thesystemstateis initialized.

The L ISP programthatwe want to modelin PROMELA

is highly structuredusingproceduralabstraction,andhence
is divided into a collectionof relatively small-sizedproce-
duresand functions. We have tried to maintainthe same
level of structuring,using PROMELA’s inline and macro
concept.Notefurthermorethatall communicationbetween
processesbasicallytakesplacevia sharedvariables, since
this is how the L ISP implementationworks. Channelsare
usedto representlists though,aswill be describedin the
next section.

3.1 Modeling Lists

Thefundamentaldatatypein L ISP is thatof lists. Lists
areusedheavily in theprogram,andhencewehavetried to
find a convenientway to representthemin PROMELA. One
solutionis todefineanabstractdatatype,implementinglists
asarraysanddefiningthe classicaloperationslike add an
element, remove an element, etc. asmacros(or inlines in
thenewestversionof SPIN). We didn’t do this,mainlydue
to anearlyattemptto avoid macrossincethey arenot well
integratedinto SPIN; they do for examplenot supportlocal
variablesverywell.

As anexperiment(ratherthana choiceof bestsolution)
wedecidedearlyto modellistsaschannels.Channelshave
someof the samepropertiesas lists: one can easily add
elements,andremove them(following the FIFO–principle
though). In addition,channelsmake someoperationsthat
we needeasy. That is, questionslike “does list 4 contain
element< ?” , andoperationslike “r emove element< from
thelist 4 – nomatterwhereit is in thelist” . Weshallshortly
describethetechnique.

First, with the macro definition “#define list
chan” wedefineanew symbollist to standfor thesym-
bol chan, which is the PROMELA keyword for declaring
channels.Thisdefinitionmakesit possibleto declarea “list
variable”asfollows:

list numbers = [5] of = int >

The“list variable”numbers is intendedto containlists
with a lengthsmallerthanor equalto � . A numberof oper-
ationsarenow defineduponlists,which we shallonly give
thesignaturesfor, seeFigure2.

inline append(e,l) ? ... @ ;
inline remove(e,l) ? ... @ ;
inline copy(l1,l2) ? ... @ ;
inline next(l,x) ? ... @ ;

Figure 2. Signatures for list operations

Informally, the procedures and functions do the
following� . The procedureappend appendsan element
to thefront of a list; remove removesa particularelement
(assumingit is there);copy copiesonelist (l1) into an-
other(l2); next removesthefirst elementinserted(FIFO
principle)andstoresthis in theresultvariablex (assuming
thelist is not empty). Supposewe have thefollowing dec-
larations:

int x;
list numbers = [5] of = int > ;
list temp = [5] of = int > ;

ThenFigure3 illustratesthe useof the list operations,
and their effect on the variablesx, numbers andtemp
(only changesareshown). All statementsexecute,hence
booleanvaluedexpressionsevaluateto 89'*#�, .

x numbers temp

0 [] []
append(1,numbers); [1]
append(2,numbers); [2,1]
append(3,numbers); [3,2,1]

next(numbers,x) 1 [3,2]
x == 1;
copy(numbers, temp); [3,2]
remove(3,temp); [2]
next(temp,x); 2 []
x == 2

Figure 3. Examples of list operations

A
Somewhatmoreformally, theproceduresperformthefollowing chan-

nel operations:append(e,l) doesl!e; remove(e,l) doesl??e;
copy(l1,l2) doescombinationsof l1?x andl2!x; andnext(l,x)
doesl?x. Notehowever, thatsomeof thesePROMELA channeloperators
do not allow variablesasarguments,only constants,hencetheimplemen-
tationsof theseproceduresaresometimesmoreelaborated.

4

3.2 The StateSpace

Threeconstantsdefinetheboundsof thesystem,Figure
4. That is, they definethesizeof thestatespace,animpor-
tantfactorfor obtainingefficientmodelchecking.

#define NO_PROPS 2
#define NO_EVENTS 2
#define NO_TASKS 3

Figure 4. The constants

TheconstantNO PROPS definesthenumberof property
names,and hencethe size of the propertylock tableand
database,whicheachhaveanentryfor eachpropertyname.
We shallwork with two propertynames:B and C . Thecon-
stantNO EVENTS definesthe numberof events, D in our
case:MEMORY EVENT andSNARF EVENT aswill be for-
malizedbelow. Finally, theconstantNO TASKS definesthe
numberof tasksin thesystem,includingthedaemon.This
numberis setto E correspondingto a daemonandtwo ap-
plicationtasks.

A numberof typesaredefined,seeFigure5F . Thetype
EventId is anenumeratedtypedefiningthetwo formsof
events. TaskId is the type of taskidentifiers. Note, that
thereare E tasks(G�H I0J�KML�KN	OE): the daemon,which is
givenidentity B andtwo applicationtasks,givenidentity C
and D respectively.

The type Property Name contains the property
names,of which therearetwo (G�H P0Q�HMP�K�	RD): B and C .
Correspondingly, thetypeProperty Value containsthe
propertyvalues. There is no constantdefining the max-
imal numberof propertyvalues,since this bound is not
neededfor declaringthe statespace(beyond declaringit
as a byte). Finally, a Property is then definedas a
recordcontainingtwo entries:a propertynameanda prop-
ertyvalue.

Now, as we shall see,the property lock table will be
modeledasa mappingfrom propertynamesto locksin the
type Lock S . Henceeachpropertynameis mappedto a
recordcontainingthe following threefields: the property
valueit is supposedto have; thelist of taskssubscribingto
the lock; andfinally, a flag indicatingwhetherit hasbeen
achievedor not.T

Note that PROMELA does not have type equationsnor enumer-
atedtypes. Hence,a type equationof the form type T = ty stands
for #define T ty and an enumeratedtype of the form type T =? A,B,C @ standsfor #define T byte, followed by #define A 0,
#define B 1 and#define C 2.U

In the L ISP programa propertylock tableis representedasa list, but
we have found themappingrepresentationto bemoreconvenientfrom a
modelingpoint of view; althoughtherebywe risk to overlook potential
errors.

type
EventId = ? MEMORY_EVENT,SNARF_EVENT @ ;
TaskId = byte;

type
Property_Name = byte;
Property_Value = byte;

typedef Property ?
Property_Name name;
Property_Value value @ ;

typedef Lock ?
Property_Value value;
list sub = [NO_TASKS] of ? TaskId @ ;
bool achieved @ ;

typedef Event ?
byte count;
list pending_tasks = [NO_TASKS] of ? TaskId @-@ ;

typedef Task ?
State state;
list waiting_for = [NO_EVENTS] of ? EventId @ ;
Property prop @ ;

type
State = ? SUSPENDED,RUNNING,

ABORTED,TERMINATED @ ;

Figure 5. Types

Each event (MEMORY EVENT and SNARF EVENT) is
associatedwith a statusrecordof thetypeEvent contain-
ing two fields: a counterthat is increasedeachtime the
eventis signaled(usedby thedaemon);andalist of pending
taskswaiting for theeventto signaled,andwhich thenwill
bere-started.Correspondingly, eachtaskis associatedwith
a statusrecordof the typeTask containingthe following
threefields: thestateof thetask(SUSPENDED, RUNNING,
ABORTED, orTERMINATED); a list of thoseeventsit waits
for in casethestateis SUSPENDED; andfinally a property
calledprop. This lastpropertyrepresentsa conditionthat
hasto besatisfiedbeforethetaskcanbere-startedin caseit
waitsfor anevent. It’s relevantwhenataskis not theowner
of a lock, andhencesomeothertaskis supposedto achieve
theproperty. Thenthetaskmustwait for thispropertyto be
achieved,hencethepropertybecomessuchacondition.

The statespaceof the modelcannow be declared,see
Figure6. The databaseis representedby the variabledb,
which is an array mappingpropertynamesinto property
values.Thepropertylock tableis representedby thevari-
ablelocks, which is an array mappingpropertynames
into locks. In theL ISP code,thepropertylock tableis rep-
resentedasa list of (propertyname,lock) pairs. Hence,in
the L ISP program,the existenceof a lock 4 on a property
name��� is representedby thefactthatthepair �
�����/49� is in

5

the list. Sincewe modelthepropertylock tableasa map-
ping from propertynamesto locks, the propertyname���
will alwayshave anentry, andwe thereforehave to model
the non-existenceof a lock differently. We have reserved
thepropertyvalue B for thoselocksthatare“non-existent”.
That is, if a propertynamemapsto a lock with property
value B , it meansit is not locked(correspondingto not be-
ing in thelist in theL ISP program).Theconstant:

#define undef_value 0

is introducedto denotethisundefinedpropertyvalue.

Two variablesareintroducedwhichstorethestatusof the
eventsandthetasks.ThevariableEvmapseventsintoevent
statusrecords,andsimilarly, thevariableactive tasks
mapstaskidentifiersinto taskstatusrecords.

Property_Value db[NO_PROPS];
Lock locks[NO_PROPS];
Event Ev[NO_EVENTS];
Task active_tasks[NO_TASKS];

Figure 6. Variab les

3.3 Events

Two operationsare defined on events, correspond-
ing to waiting for an event and signaling an event.
These operations are representedby the procedures
wait for event V , Figure7, andsignal event, Fig-
ure8.

inline wait_for_event(this,a,p) ?
atomic ?

append(this,Ev[a].pending_tasks);
append(a,active_tasks[this].waiting_for);
active_tasks[this].prop.name = p.name;
active_tasks[this].prop.value = p.value;
active_tasks[this].state = SUSPENDED;
active_tasks[this].state == RUNNING@@

Figure 7. wait for event

The procedurewait for event takes three param-
eters: the parameterthis (type TaskId) identifiesthe
task that calls the procedure,and hence the task that
W
A procedurewait for events alsoexists,but it is very similar to

wait for event.

inline signal_event(a) ?
atomic ?

TaskId t;
EventId e;
list pending = [NO_EVENTS] of ? EventId @ ;
Ev[a].count = Ev[a].count + 1;
copy(Ev[a].pending_tasks,pending);
do
:: pending?t ->

if
:: (active_tasks[t].prop.value ==

undef_value
||
db_query(active_tasks[t].prop))
->
do
:: active_tasks[t].waiting_for?e

-> remove(t,Ev[e].pending_tasks)
:: empty(active_tasks[t].waiting_for)

-> break
od;
active_tasks[t].state = RUNNING

:: else
fi

:: empty(pending) -> break
od@@

Figure 8. signal event

wants to wait for an event to happen. The parame-
ter a (type EventId) identifies the event to be waited
for; and finally the parameterp (type Property) rep-
resents a property that must be satisfied in addition
to the occurrenceof the event before the calling task
can be re-started. For example, when a task wants
to wait for some other task to achieve the property
CAMERA ON X , then it calls this procedureas follows:
wait for event(this,MEMORY EVENT,CAMERA ON).
We shallreferto thispropertyastherestartcondition.

The body of the procedureis executedatomically, as
within a critical section.First, thecalling taskis appended
to the event’s list of pendingtasks(thosewaiting for the
eventto occur).Second,theeventis appendedto thetask’s
list of eventsit is waiting for. Third, the restartcondition
p is storedin the task’s statusrecord in the prop field.
Note that sincePROMELA doesnot allow for assignments
to recordvariables,eachfield hasto be updatedindividu-
ally. Finally, the task is suspendedby updatingthe task’s
state field. Thewaiting itself is realizedby executingthe
statement:

active_tasks[this].state == RUNNING

Y
Thatis, thepropertynameCAMERA musthave thevalueON.

6

This is a boolean valued expression(without side ef-
fects), and accordingto the semanticsof PROMELA, it
can only execute, and terminate, if its value is 89'�#:, .
Hence, the calling task will wait until it becomes89'�#:, ,
the intention being that the signal event procedure
at some later point will assignthe value RUNNING to
active tasks[this].state.

Theproceduresignal event takesonesingleparam-
eter, namelythe eventa (typeEventId) to be signaled,
andthenbasicallyrestartsall taskswaiting for thatevent,if
their restartconditionis satisfiedthat is. Threelocal vari-
ablesaredeclared:t, e andpending, thelastintendedto
hold the list of taskswaiting for theevent. First, theevent
counterin incremented.The event counteris usedby the
daemonto determinewhethera new, anduntreated,signal
hasarrived,seeFigure22 page11. Thentheevent’s list of
pendingtasksis copiedinto the local pending variable,
which hereafterin a loop is examined,taskby task. Each
task is extractedby the statementnext(pending,t),
andhencestoredin thelocalvariablet.

Now, for eachsuchwaiting taskt, if the task’s restart
conditionprop is satisfiedit is restarted.Therestartcon-
dition is satisfied,if either its propertyvalue is undefined
(equalsundef value), or if it indeedis satisfiedin the
database.Thelatteris thecaseif theexpression:

db_query(active_tasks[t].prop)

evaluatesto 89'*#�, . Thefunctiondb query, Figure9, takes
asparametera propertyp (typeProperty), andreturns
89'*#�, if thedatabasesatisfiesit (thepropertynamedenotes
thepropertyvalue).

#define db_query(p)
db[p.name] == p.value

Figure 9. db quer y

Hence, in case the restart condition is satisfied, an
inner loop is entered,in which all events in the task’s
waiting for list areexamined,andfor eachsuchevent:
the taskis removedfrom the event’s list of pendingtasks.
In otherwords, the task is removed from all eventssince
it’s now restarted. In the L ISP code, the body of the
signal event procedureis embeddedwithin a critical
section. A direct modelingof this in PROMELA resultsin
anatomic constructaroundthebody.

3.4 The Tasks

Tasks are modeled as PROMELA processes. Be-
fore we define what a task is, we shall, however, in-
troduce a collection of procedures. The procedure

fail if incompatible, Figure10, is calledby a task
just before it tries to snarf a property, in order to check
whetheror not this is in conflictwith alreadyexistinglocks.
The proceduretakes as parameterthe property p (type
Property) to besnarfed,andreturns89'*#�, if someother
taskhasalreadysnarfedthepropertyname,but with a dif-
ferent,andthereforeincompatible,propertyvalue. Recall
that if the propertynamedenotesa value different (!=)
from undef value in the lock table, then it has been
locked.Theresult of this test is storedin the return vari-
ableerr, which we shall seeis usedto direct control in
thecallingcontext.

inline fail_if_incompatible_property(p,err) ?
if
:: (locks[p.name].value != undef_value &

locks[p.name].value != p.value) ->
err = 1

:: else
fi@

Figure 10. fail if incompatib le proper ty

Theproceduresnarf property lock, Figure11, is
calledby a taskto snarfa property. Theproceduretakesas
parametertheidentity, this (typeTaskId), of thecalling
task;andtheproperty, p (typeProperty), to besnarfed.
Thesuccessof theoperationis written backinto theresult
variableerr.

inline snarf_property_lock(this,p,err) ?
atomic ?

fail_if_incompatible_property(p,err);
append(this,locks[p.name].sub);
if
:: locks[p.name].value == undef_value ->

locks[p.name].value = p.value;
locks[p.name].achieved = db_query(p)

:: else
fi;
signal_event(SNARF_EVENT)@@

Figure 11. snarf proper ty lock

Theprocedurefirst checkswhethertheoperationis com-
patiblewith thealreadyexisting locks. That is, theremust
not bea lock with thesamepropertyname,but with a dif-
ferentpropertyvalue. Note that the resultof this checkis
written into theerr variable.In thecallingcontext, Figure
17, we shall later seethe effect of this resultvariablebe-
coming 89'�#�, : aninterruptwill occurandterminatethetask.

7

The task is thenappendedto the list of subscribersto the
property:thosethatwant it to become89'�#�, . Then,in case
thepropertyis in factnotalreadyin thelock table,it is “in-
serted”:thepropertynameof p is setto denotetheproperty
valueof p; and the achieved field is set to 89'�#:, if the
propertyalreadyholdsin thedatabase(call of db query),
otherwiseto Z�.04[!$, . Finally, theSNARF EVENT is signaled
with theresultthatthedaemonwill berestartedif waiting.

After having snarfedtheproperty, it is now upto thetask
to achieve theproperty– if it is theownerthat is. A taskis
theownerof a property, if it wasthefirst to subscribeto it,
andhencethefirst elementin theproperty’s subscriberlist
in the lock table. Theprocedurefind owner, Figure12,
determinesthis. It takesasparameterthepropertyp (type
Property), andreturnsin theresultvariableowner (type
TaskId) theownerof thatpropertyin thelock table.

inline find_owner(p,owner) ?
locks[p.name].sub?<owner>@

Figure 12. find owner

Whena taskfinally wantsto achieve a property, it calls
the procedureachieve lock property, Figure 13.
Theproceduretakesasparameterthe identity, this (type
TaskId), of the calling task; and the property, p (type
Property), to beachieved.Theresult(success)of theop-
erationisstoredin theresultvariableerr (typebool). The
taskcanonly achieve thepropertyif it’s theowner. Hence,
first it is determinedwhichtaskis theownerof theproperty
p: theprocedurecallfind owner(p,owner) storesthe
owner in the result variableowner. In casethe owner
equalsthecalling task(this), thepropertyis achievedby
acall of theprocedureachieve (definedin Figure14and
describedbelow); andtheachieved field is setto 89'�#:, .
On theotherhand,if thetaskis not owner, it mustwait for
the owner (someothertask)to achieve the property. This
waiting is initiatedby acall of wait for event with the
propertyp asrestartcondition.Thatis, thecalling taskwill
only berestartedon a memoryevent,if alsothepropertyp
hasbeenachieved,andhenceis satisfiedin thedatabase.

Theprocedureachieve, Figure14, is theonethat re-
ally achievesthepropertyby updatingthedatabasein case
thepropertyis notalreadysatisfiedin thedatabase.Thepro-
ceduretakesasparameterthepropertyp (typeProperty)
to be achieved. If the propertyis alreadysatisfiedin the
database– i.e. db query(p) evaluatesto 89'*#�, – thepro-
cedurereturnssuccessfully\ . Otherwise(else), in casethe
propertyis notalreadysatisfied,a non-deterministicchoice
]
Thefirst if–branchis equivalentto db query(p) -> skip.

inline achieve_lock_property(this,p,err) ?
TaskId owner;
find_owner(p,owner);
if
:: owner == this ->

achieve(p,err);
locks[p.name].achieved = true

:: else ->
wait_for_event(this,MEMORY_EVENT,p);

fi@

Figure 13. achieve lock proper ty

is madebetweensuccess: updatingthedatabaseto achieve
theproperty, andfailure: settingthebooleanresultvariable
err to 89'�#:, . This non-determinismreflectsthe fact that
achievementcanfail, andweabstractawayfrom thedetails
aboutthepossiblecausesof failure.

inline achieve(p,err) ?
if
:: db_query(p)
:: else ->

if
:: db[p.name] = p.value
:: err = 1
fi

fi@

Figure 14. achieve

Oncethetaskhasachievedtheproperty, it is readyto ex-
ecuteits realjob while assumingthatthepropertyis invari-
antlysatisfied(thedaemonmustinterveneandstopthetask
if this is notthecase).Theprocedureclosure, Figure15,
representsthis job. Its body is simple: a non-deterministic
choicebetweenjustaskip statementandfalse. In case
thefirst if–branchis chosen,skip is executed,andthepro-
cedurereturnsimmediately. In case,on theotherhand,the
secondbranchis chosen,theexecutionof falsewill make
thecalling taskblock,sincefalse cannotexecuteandter-
minatedueto the semanticsof PROMELA. This blocking
is supposedto simulateatimeconsumingcomputation,and
is neededlater in orderto convenientlyformulatea certain
correctnesspropertyto be verified. The correctnessprop-
erty basicallysaysthat in casethepropertyis broken(i.e.:
is no longer in the database),the taskwill be terminated.
Now, supposeclosure alwaysterminated,this property
wouldbetrivially satisfied– hencetheblockingalternative,
allowing us to verify that thedaemonreally explicitly and
violently abortsthetask.

Assumethatthetasknow hascalledtheclosure, and

8

inline closure() ?
if :: true -> skip :: true -> hang fi@

Figure 15. closure

that this terminates– eitherby choosingtheskip branch,
or becauseit hasbeenabortedby thedaemon.In this case
the snarfedpropertyno longerneedsto be satisfiedin the
database,at leastso far aswhatconcernsthis task. Hence,
our taskmustreleasetheproperty, meaningthat it mustbe
removedfrom thepropertylock table.Thiswill allow other
tasksto snarf and lock the samepropertynamebut with
differentpropertyvalues. The releasingis doneby a call
of the procedurerelease lock, Figure16. It takesas
parametertheidentity,this (typeTaskId), of thecalling
task;andtheproperty,p (typeProperty), to bereleased.

inline release_lock(this,p) ?
atomic ?
remove(this,locks[p.name].sub);
if
:: empty(locks[p.name].sub) ->

locks[p.name].value = undef_value
:: nempty(locks[p.name].sub)
fi@@

Figure 16. release lock

Its bodyis embeddedwithin anatomic to modelacrit-
ical sectionin the L ISP code. Theprocedurebasicallyre-
movesthe taskfrom thepropertyname’s subscriberlist in
the lock table,sincethe taskno longersubscribesto it. In
casethe subscriberlist therebybecomesempty– no other
taskssubscribe– thelockmustberemovedcompletelyfrom
thelock table.Thisisdonebyassigningtheundef value
aspropertyvalueto thepropertynamein thetable.Recall,
thatthis is theway wemodeltheabsenceof a lock (a prop-
erty namemapsto undef value), whereasin the L ISP

program,thelock wouldsimplyberemovedfrom thelist of
locks.

We cannow finally definethetop-level procedure
execute task, Figure 17 – called by a task – which
snarfsthe propertyto be maintained,achievesit, executes
thebody, andfinally releasesthepropertyagain.Theproce-
duretakesasparametertheidentity, this (typeTaskId),
of the task; and the property, p (type Property), to be
achievedandthereaftermaintainedto theendof thetask.

We have up until now seen the variable err oc-
curring as result parameterto most of our procedures.

inline execute_task(this,p)?
bool err = 0;?

snarf_property_lock(this,p,err);
achieve_lock_property(this,p,err);
closure()@
unless? err || active_tasks[this].state == ABORTED @ ;

active_tasks[this].state = TERMINATED;

? release_lock(this,p) @
unless? active_tasks[this].state == ABORTED @@

Figure 17. execute task

This variable is declared as a local variable at this
outermost level, and hence passedas actual param-
eter to the proceduressnarf property lock and
achieve lock property. Thecallsof thesetwo pro-
ceduresareembeddedwithin anunless constructof the
form

= snarf;achieve;job> unless = condition> .
where the condition is that either err is 89'�#:, , or
(||) the task has been aborted by the daemon:
active tasks[this].state == ABORTED. As we
shall seein the next section,the daemonabortsa taskex-
actly by assigningthevalueABORTED to thestate field
in the tasksstatusrecord. The semanticsof the unless
constructis suchthatthesnarfing,achieving andjob is per-
formedto the end,unlessthe conditionbecomes89'�#:, , in
whichcasethewholestatementterminatesabruptly. Hence,
in thecasethateitherthesnarfingor theachievementgoes
wrong (err becomes89'*#�,), or in the casethat the taskis
abortedby thedaemon– thewholeoperationterminates.

Once the snarfing,achieving and job has beentermi-
nated,eithernormallyor abnormally, thestatement:

active_tasks[this].state = TERMINATED;

is executed. This is part of the modeling of the L ISP

unwind-protect construct.Thepurposeof theassign-
ment is to “restore” the valueof the state field in case
the task hasbeenabortedby the daemon;and hencethis
field hadgot thevalueABORTED. Restoringheremeansas-
signinga valuedifferent from ABORTED, sincethe value
ABORTED will result in an immediateterminationof the
statementthat follows. The laststatementnamelyreleases

9

thepropertyfrom thelock table,but is abruptlyterminated
in casethe state field has,or getsthe valueABORTED
by the daemon,in casethe daemonat this point discov-
ersa violation. This is hencethe secondexampleof how
thePROMELA unless interruptconstructis usedto model
taskabortion.

We arenow ableto definetheprocesstype
Achieving Task, Figure 18, of which a processis
spawned/instantiatedfor eachtask. It takes as parameter
its own identity, this (typeTaskId), which will be de-
terminedin the initialization section,Figure 25. A local
variablep is declared,which is assignedthepropertyto be
snarfedandachievedby thetask.In orderto reducethestate
spaceto modelcheck,wehavefocusedonpropertynameB
(p.name = 0), andwe arbitrarily let the taskachieve a
propertyvaluewhich is identicalto thetask’s identity: C or
D since,aswe shall see,only two taskswill be spawned.
Finally the main procedureis called, which performsthe
snarfing,achievement,job andrelease.Note that all tasks
in this modelperformthesamejob (closure). This is an
exampleof an abstractionfrom the L ISP code,wherede-
tails regardedasunimportantfor theverificationhave been
omitted.

proctype Achieving_Task(TaskId this)? Property p;
p.name = 0;
if
:: this == 1 -> p.value = 1;
:: this == 2 -> p.value = 2
fi;
execute_task(this,p);@ ;

Figure 18. Achieving Task

3.5 The Daemon

Thedaemonis responsiblefor detectingwhetherviola-
tions of locks occurin the database.That is, it mustreact
in casea propertyname��� in the lock table is locked to
a propertyvalue ��� � , and the correspondingachieved
field is set to 89'�#�, (hencea task relies on it and is exe-
cuting its job), but ��� denotesa value ��� � �	^��� � in the
database.In thatcasethedaemonmustinterruptthe tasks
relyingontheproperty �_������������� andrepairtheviolationby
updatingthedatabase,assigning����� to ��� again.Thepro-
cedureinterrupt task, Figure19,takesasparametera
task,t (typeTaskId), to beaborted,anddoesthisby sim-
ply assigningthevalueABORTED to thestate field of the
task’s statusrecord. This will causethe relevantunless
constructto terminatethetask(Figure17).

inline interrupt_task(t) ?
active_tasks[t].state = ABORTED@

Figure 19. interrupt task

The procedureproperty violated, Figure 20, is
usedto determinewhetherlocks have beenviolated. It is
calledfor eachpropertynamehaving an entry in the lock
table(B and C in our reducedcase),andtakesasparameter
this propertynamepn (typeProperty Name); returning
the resultbackinto thevariablelock violation (type
bool). Thebodyconsistsof a singleassignmentto there-
sult variable,whichbecomes89'�#:, if f. thepropertynameis
locked (propertyvalueis defined),hasbeenachieved,but
hasa propertyvaluedifferentfrom theonein thedatabase.

inline property_violated(pn,violation) ?
atomic ?

violation =
(locks[pn].value != undef_value &
locks[pn].achieved &
db[pn] != locks[pn].value)@@

Figure 20. proper ty violated

The procedureproperty violated is called from
the procedurecheck locks, Figure 21, which checks
the whole property lock table for violations. This is
done in a loop that iteratesover all the property names` Bba$a�a2G�H PcQ�HMP�KedfC�g . In fact, thereare two suchloops.
In the first loop, in caseof a propertynamepn beingvi-
olated(denotingsomethingdifferent in the databasethan
in thelock table),all thesubscribersto thatpropertyname
are interrupted. This is done by first taking a copy of
this subscriberlist, storing it in the local variablesub,
and then extracting eachtask t from sub, one by one
(next(sub,t)), andinterruptingit.

In thesecondloop, a break statementcausestermina-
tion assoonasa violation is found,thepurposebeingjust
to examinewhetherthereareany violationsleft. This re-
sult is returnedin the result variableviolation of the
check locks procedure.Theresultwill thenbeusedin
thecallingcontext to decidewhetherthedatabaseshouldbe
recovered.

The two loops are also presentin the L ISP code,and
sincethey result in an unexpectedbehavior found during
verification,to beexplainedin section4.4,we quoteErann
Gat’sexplanationof thecode:

10

inline check_locks(lock_violation) ?
Property_Name pn;
list sub = [NO_TASKS] of ? TaskId @ ;
TaskId t;
pn = 0;
do
:: pn < NO_PROPS ->

property_violated(pn,lock_violation);
if
:: lock_violation ->

atomic ? copy(locks[pn].sub,sub) @ ;
do
:: sub?t -> interrupt_task(t);
:: empty(sub) -> break
od

:: else
fi;
pn++

:: else -> break
od;
pn = 0;
do
:: pn < NO_PROPS ->

property_violated(pn,lock_violation);
if
:: lock_violation -> break
:: else
fi;
pn++

:: else -> break
od@

Figure 21. check locks

Thestructure of this codeis complicatedby the
designrequirementthat an externalprocessmay
be responsiblefor restoringviolatedproperties.
(In the caseof the DS1RA this is the MIR pro-
cess.) Sotasksneedto be able to decide, when
a propertythat they wantmaintainedis violated,
if they want to wait for the external processto
restore the propertyor if they want to fail right
away. If all thetasksthat relyona violatedprop-
erty fail right away thenthere is no needto re-
storetheproperty, sincenooneis relyingonit any
more. Socheck-locksmakesonepassthroughthe
property locks and injects failures into all tasks
that rely on violatedproperties. It thenyieldsto
giveall thosetasksa chanceto abort themselves
if they chooseto. Thenit checks to seeif there
are any violatedpropertiesleft. This is returned
as a booleanto the first part of the maintain-
properties-daemon,which runsin aninfiniteloop.

The daemonprocessitself will be an instanceof the
processtype Daemon, Figure 22, which as parameter
takes its own identity, this (type TaskId). It de-

claresthreelocal variables: lock violation, to hold
the result of check locks; event count, to keep
track of new events; and first time, which is 89'�#�,
only when the daemonstarts. The body consistsof an
infinite loop, which for each iteration does the follow-
ing. The procedurecheck locks is called to deter-
mine if there are any violations. If there are, the pro-
ceduredo automatic recovery is called,which has
not been shown here, but which basically repairs the
databaseby making it consistentwith the lock table.
Thatis, do automatic recovery performstheupdate
db[pn] = pv for eachpropertynamepn, wherethelock
tablemapspn to pv, but thedatabasedb doesnot.

proctype Daemon(TaskId this) ?
bit lock_violation;
byte event_count = 0;
bit first_time = true;
do
:: check_locks(lock_violation);

if
:: lock_violation ->

do_automatic_recovery()
:: else
fi;
if
:: (!first_time &&

Ev[MEMORY_EVENT].count +
Ev[SNARF_EVENT].count != event_count)
->
event_count =

Ev[MEMORY_EVENT].count +
Ev[SNARF_EVENT].count

:: else ->
first_time = false;
wait_for_events(this,
MEMORY_EVENT,SNARF_EVENT)

fi
od@ ;

Figure 22. Daemon

Then, in the secondif construct,it is decidedwhether
thedaemonshouldstopandwait for anew memoryor snarf
eventto occur(call of wait for events), or whether
it shouldcontinuewith yetanotheriteration,calling
check locks andperhaps
do automatic recovery. Anotheriterationis needed
if a memoryevent or a snarfevent hasoccurredsincethe
daemonwasrestartedlast time. This is expressedas fol-
lows: whenfirst time is 89'�#:, (initial state),the dae-
monsimply callswait for events, andthenwaits for
eitheraMEMORY EVENT oraSNARF EVENT tooccur. The
procedurewait for events hasnot beenshown, but is
likewait for event, Figure7, exceptthatnotone– but
eitherof two eventsarewaitedfor. A seconddifferenceis

11

that a booleanvariabledaemon ready is set to 89'�#�, as
thelastthingbeforethedaemonstartswaiting. This is used
during initialization, Figure25, aswe shall see. Now, in
caseit’s not thefirst iteration,thetest:

Ev[MEMORY_EVENT].count +
Ev[SNARF_EVENT].count

!=
event_count

is executed.It evaluatesto 89'�#:, in casethe eventcounter
event count differs from the sum of the event coun-
ters for the memoryandsnarfevents. If thereis a differ-
ence,it meansthat therehasbeenaneventsincelast time
event countwasupdated,andthismustresultin yetan-
otheriterationbeforecallingwait for events. Before
thisextraiteration,theevent count variableis,however,
updated.

3.6 The Envir onment

Violationsareintroducedby theenvironment,heremod-
eledby the processtype Environment, Figure23. An
instantiationof this will run in parallelwith the tasksand
the daemon,andmay causea databasechangeat any mo-
ment in time. The changeis herefixed to propertyname
B gettingpropertyvalue B . This will introducea violation
in casea lock hasbeencreatedfor propertyname B with
a valuedifferentfrom B . TheMEMORY EVENT is further-
moresignaledto wake up the daemon,in caseit’s not al-
readyrunning. The daemonshall thenhopefully discover
theviolation just introduced.

proctype Environment()? atomic ?
db[0] = 0;
signal_event(MEMORY_EVENT)@@ ;

Figure 23. Environment

3.7 Initialization

All processes,the daemonandthe tasks,areall instan-
tiatedwith the procedurespawn, which takesasparame-
ter theparameterizedtask (aproctype) to bespawned;
andasa secondparameterit takesthetaskidentityt (type
TaskId) of the taskto be spawned. Thesecondparame-
ter is thenfedasactualparameterto thefirst parameterin a

#define spawn(task,t)
atomic ?

active_tasks[t].state = RUNNING;
run task(t)@

Figure 24. spawn

run statement.Beforethathappens,thetask’sstate field
getsthevalueRUNNING.

Finally, thesystemis initializedby spawningthedaemon
with identity B , thetwo taskswith identity C respectively D ,
andthentheenvironment,seeFigure25. Beforethe tasks
arespawned,however, the daemonis waitedfor to termi-
nateits own local initialization. This is doneby waiting for
thevariabledaemon ready to become89'�#:, . In fact,this
modelsthe fact that thedaemonwill bestartedbeforeany
othertaskin thesystem.h

init?
spawn(Daemon,0);
daemon_ready == true;

spawn(Achieving_Task,1);
spawn(Achieving_Task,2);
run Environment()@

Figure 25. initialization

4 Analysiswrt. SelectedProperties

4.1 Identifying Propertiesto beVerified

The model hasbeenanalyzedwrt. the following two
properties,hereexpressedinformally:

RELEASE Property: A task releasesall its locks before it
terminates.

ABORT Property: If an inconsistencyoccurs betweenthe
databaseandan entry in the lock table, thenall tasksthat
i
In an early model, the taskswere spawned without waiting for the

daemon,but that leadto the discovery of an errorby the modelchecker,
seesection4.7. Theerrorwasbasicallythata lock violation couldoccur
beforethe daemongot to its initial waiting point, which the first time is
unconditional!;andhencethedaemonwould just ignoretheviolation and
callwait for events.

12

rely on thelock will beterminated,eitherby themselvesor
by thedaemonin termsof anabort.

In thefollowing we shalldemonstratehow we have for-
mulatedthesepropertiesin termsof PROMELA assertions
(assert–statements)and LTL formulae,andwe shall show
the resultsof applying the SPIN model checker to verify
theseproperties.It turnsout thatnoneof themaresatisfied
in the presentedmodel,a discovery that haslead the RA
programmersto makecorrectionsin theL ISP code.

The verificationof the two propertiesleadto the direct
discovery of four errors(wrong code)– onebreakingthe
RELEASE property,andthreebreakingtheABORT property.
All of theseerrorsareclassicalin thesensethat they arise
dueto processesinterleaving in unexpectedways. Hence,
for example, two errorscan be correctedby introducing
critical sectionsaroundthe troubledcode. Furthermore,a
lessserious,but at thattimeyet undiscoveredefficiency er-
ror (codeexecutedtwice insteadof once)wasdiscovered
just by observinggeneratedtracesfrom the modelcheck-
ing. Hence,a totalof five errorswereidentifiedin theL ISP

code,four of which beingimportant. In additionto this, a
verification“highlightedtheneedfor a mechanismto insure
that thedaemonhasreached‘steadystate’before proceed-
ing” . Althoughthiswasnotconsideredasadirecterror, we
havereportedit here.

4.2 Err or C – The RELEASE Property

RELEASE Property:A taskreleasesall its locksbefore it
terminates.

4.2.1 Formalizing The Property

In orderto formalizethis property, we needto definewhat
it meansfor a taskto have releasedits locks. Thefunction
not subscriber in Figure26returns89'�#�, if taskt does
not subscribeto propertynamepn, hencehasreleasedit’s
lock onpn.

#define not_subscriber(this,pn)
!locks[pn].sub??[eval(this)]

Figure 26. RELEASE predicate

To statethe RELEASE property, we modify the defini-
tion of theprocessAchieving Task, Figure18, adding
anassert–statementafterthecall of execute task. This
modificationis shown in Figure27.

Whena task terminates(endof execute task), we
expectthat it is no longersubscriberof thepropertyname

proctype Achieving_Task(TaskId this)? Property p;
p.name = 0;
if
:: this == 1 -> p.value = 1;
:: this == 2 -> p.value = 2
fi;
execute_task(this,p);
assert(not_subscriber(this,p.name))@ ;

Figure 27. Formalization of RELEASE proper ty

it hassnarfed(p.name), andhenceweexpecttheassertion
to besatisfied.

4.2.2 Err or Detection

RunningtheSPIN modelchecker on themodifiedprogram
yieldsanerror traceillustratingthat theassertionis not al-
wayssatisfied.The trace(shortened)describesthe follow-
ing sequenceof events:

1. A task starts, running processAchieving Task
in Figure 27. This implies a call of the procedure
execute task, definedin Figure17.

2. The procedure execute task does the snarf-
ing, the achieving, the closure call, and then
executes the active tasks[this].state =
TERMINATED statement,readyto releaseits lock by
calling therelease lock procedure.

3. At this point, just beforethecall of release lock,
theEnvironment, definedin Figure23, introduces
aninconsistency in thedatabasesuchthattheproperty
valueof propertyname0 becomes0 in the database,
while it is expectedto bedifferentfrom 0 by therun-
ning task.

4. TheDaemon,Figure22,detectsthis inconsistency and
abortsthe taskin thecheck locks procedure,Fig-
ure 21, by calling the procedureinterrupt task
definedin Figure 19. That is, the statusof the task
becomesABORTED.

Thewaytheexecute task is programmed,thisabor-
tion will at this point result in an exit of this procedure,
henceskipping release lock. This is causedby the
PROMELA semanticsof theunless constructasoccurring
in (Figure17):

= release_lock(this,p) > unless
= active_tasks[this].state == ABORTED >

13

Hence,even though the snarfing,achieving, and clo-
sureis protectedagainstabortion(if anabortoccursthere,
release locks will becalledanyway), the lock releas-
ing itself is not protected:if anabortoccurshere,the lock
releasingis abandoned.This reflectsthe semanticsof the
appliedESL constructof theform “Protect P Exit Q
End” executingP andthenQ (thelock releasing),with the
addition,that if anabortoccursduring theexecutionof P,
theremainderof P is skipped,andQ getsexecuted.Hence,
theideais thatQ alwaysgetsexecuted,evenif anabortoc-
cursduringtheexecutionof P. Theunexpectedsituationis
thatanabortcanoccurduringtheexecutionof Q, with the
resultthattherestof Q will notbeexecuted.

4.2.3 Err or Corr ection

Theidentifiederrorcanbecorrectedby protectingthelock
releasingitself againstabortion. This we have donein a
modifiedversionof the PROMELA modelj , suchthat lock
releasingcannotbeaborted.HereaftertheRELEASE prop-
erty is verifiedcorrectusingtheSPIN modelchecker. How
themodificationis donein theL ISP programis beyondthe
scopeof thepresentpaper.

4.3 Err or D – The ABORT Property

As alreadymentioned,threeverificationsof thisproperty
wereperformed,eachdemonstratinganerror in themodel
causingthefalsificationof theproperty. Wewill presentthe
first verificationin thissection.

ABORT Property: If an inconsistencyoccurs betweenthe
databaseandan entry in the lock table, thenall tasksthat
rely on thelock will beterminated,eitherby themselvesor
by thedaemonin termsof anabort.

4.3.1 Formalizing The Property

Our verificationwill be concretein that we shall focuson
task1. Weshallstate,thatif task1 hassnarfedandachieved
propertyname0, assumingit to denotepropertyvalue1 in
the database(asstatedin Figure 18) then if this assump-
tion is brokenby theenvironment,task1 will beterminated.
Firstof all, weformally definewhatit meansfor task1’sas-
sumptionto bebroken,andwhat it meansfor task1 to be
terminated.Figure28shows two suchpredicates.

Thepredicatetask1 property broken
returns 89'�#:, in caseof an inconsistency betweenlocks
(mapping0 to 1) and db (mapping0 to 0) in a situa-
tion where the task assumesthe property to have been
k
Basicallyby removing theunless constructattachedto the call of

release lock.

#define task1_property_broken
(locks[0].value == 1 &
locks[0].achieved &
db[0] == 0)

#define task1_terminated
(active_tasks[1].state == TERMINATED ||
active_tasks[1].state == ABORTED)

Figure 28. ABORT predicates

achieved. The predicatetask1 terminated is 89'�#�,
whenthestateof task1 is eitherTERMINATED, setby it-
self, or ABORTED, setby the daemon.The ABORT prop-
erty can now be statedas an LTL formula as shown in
Figure29. The propertystatesthat “in all states([]), if
task1 property broken holds,theneventually(<>),
at somefuture point in time, task1 terminated will
hold” .

[](task1_property_broken -> <>task1_terminated)

Figure 29. Formalization of ABORT proper ty

It’s relevant hereto note that this propertyonly makes
senseto verify if task1 hasthe potentialof not terminat-
ing at all in caseit’s not aborted. This is the reasonwhy
the closureis definedas in Figure 15. The closurecan
arbitrarily choosethetrue -> false branchwhereby
it will hangon the false expressionwithout beingable
to progressaccordingto the semanticsof PROMELA. Of
course,in the real L ISP programa taskwill probablyal-
waysterminate,andwearethereforereally interestedin the
taskbeingterminatedwithin acertaintimeframe.However,
sincePROMELA cannotdealexplicitly with time, we have
chosenonly to focusonthedistinctionbetweentermination
(atsomefutureunspecifiedtime)andnon-termination.

4.3.2 Err or Detection

Applying the SPIN model checker to the above property
yieldsanerrortracedemonstrating,thatthepropertyis not
satisfiedin the model. The traceillustratesthe following
sequenceof events.

1. The daemon,Figure22, startsand reachesa waiting
position. That is, it callswait for events, where
afterit waitsfor aneventto occur.

2. A task, Figure 18, starts; snarfsand achieves suc-
cessfully, thereby signaling SNARF EVENT from

14

snarf property lock, Figure11,andthenstarts
executingits closure.This closurechoosesthetrue
-> false branch. Henceif it is not abortedit will
never terminate(correspondingto a time consuming
computationin a realsetting).

3. Thedaemonhasbeenwokenupby thesignalingof the
SNARF EVENT. No inconsistenciesarefound,andthe
daemonthendecidesto wait again. That is, it takes
thedecisionto call wait for events, but delaysa
bit beforedoingit. Notethedelaybetween“decision”
and“action” here.Thedecisionto wait is takenin the
PROMELA modelin Figure22atthelastelse branch.

4. The environment,Figure 23, introducesan inconsis-
tency, andsignalstheMEMORY EVENT. However, this
signalwill not affect the daemonsinceit alreadyhas
decidedto call wait for events. It will for ex-
amplenotcheckwhethertheeventcountershavebeen
updated.

5. Thedaemonnow callswait for events uncondi-
tionally, andhence,startswaiting. Thetaskhencedoes
notgetaborted,andcontinueswith its “big” computa-
tion.

4.3.3 Err or Corr ection

A solution to the detectedproblemis to embedthe deci-
sionto wait andthewaitingitself into acritical section,that
cannotbeinterruptedby otherprocesses.In PROMELA, the
atomic constructcanbeusedto definea critical section,
andFigure30 shows how theDaemon hasbeenextended
with suchacritical sectionaroundthecodeportionthatde-
cideswhetherto wait or not (thelastif–statement).

ReapplyingtheSPIN modelcheckertoverify theABORT

propertyformulatedin Figure29 for the modifiedmodel,
however, shows that thereis still anerror in thesystem,as
describedin thenext section.

4.4 Err or E – The ABORT Property

With the correctedmodel,we re-applythe SPIN model
checker to thesameproperty, hopingthat it now holds. As
alreadymentionedandaswill bedemonstrated,it still does
nothold.

4.4.1 Formalizing The Property

Thepropertyto beverifiedis asbefore,namelytheonepic-
turedin Figure29.

proctype Daemon(TaskId this) ?
...

atomic ? -- added
if
:: (!first_time &&

Ev[MEMORY_EVENT].count +
Ev[SNARF_EVENT].count != event_count)
->
event_count =

Ev[MEMORY_EVENT].count +
Ev[SNARF_EVENT].count

:: else ->
first_time = false;
wait_for_events(this,
MEMORY_EVENT,SNARF_EVENT)

fi@
...@ ;

Figure 30. New Daemon

4.4.2 Err or Detection

Applying the SPIN model checker yields an error trace
demonstrating,that the property is not satisfied in the
model. The trace illustrates the following sequenceof
events.

1. The daemon,Figure30, startsand reachesa waiting
position. That is, it callswait for events, where
afterit waitsfor aneventto occur.

2. A task, Figure 18, starts; snarfsand achieves suc-
cessfully, thereby signaling SNARF EVENT from
snarf property lock, Figure11,andthenstarts
executingits closure.This closurechoosesthetrue
-> false branch. Henceif it is not abortedit will
never terminate(correspondingto a time consuming
computationin a realsetting).

3. The daemon, Figure 30, has been awakened by
the signaling of the SNARF EVENT, and calls
check locks �2l , Figure 21. Now check locks
consistsof two loops,oneexecutedbeforethe other.
Thefirst loop looksfor violationsandinterruptstasks
dependingonviolatedproperties.Thesecondloopjust
checksfor violations (and doesnot interrupt tasks).
Hence,the daemonexecutesthe first loop – finds no
violation– andthenis now readyfor executingthesec-
ondloop.

;�m
In fact, check locks is called twice, seesection4.6, and it’s the

second– andlast– call which is referredto.

15

4. The environment,Figure 23, introducesan inconsis-
tency, andsignalstheMEMORY EVENT. However, the
daemonis alreadyrunning. Hence,the only effect is
thattheMEMORY EVENT counteris increased.

5. The daemon now executes the second loop of
check locks, andfindstheviolation. Hence,it calls
do automatic recovery, which repairsthe vio-
lationby updatingthedatabase.

6. Due to the signalingof the MEMORY EVENT in item
� by the environment, the MEMORY EVENT counter
has beenincreased,and hencethe daemonwill ex-
ecute check locks again. However, since the
violation has been repaired, the daemonwill not
find anything wrong, and will thereforefinally call
wait for events andthenwait for a new eventto
occur. The task is still executing,and hasnot been
aborted.

4.4.3 Err or Corr ection

At thetimewhenthiserrortracewasgenerated,webelieved
that it wasin factan intendedbehavior, andonly laterwas
it confirmedto beanunexpectedandundesiredbehavior –
an error. Hence,we did not correctit; andeven with the
knowledgewehavenow, it is notevidentfor ushow to cor-
rectthis.

4.5 Err or � – The ABORT Property

4.5.1 Formalizing The Property

Sincewe originally did not regard the above situationas
anerror, we continuedtheverificationasif it wasa correct
behavior. Thatis, in orderto investigatetheexistenceof ad-
ditional errors,we hadto reformulatethe ABORT property
suchthat the above situationwasallowed�/� . Hence,since
the model may repair an inconsistency without aborting
tasks,thepropertyshallstatethis: in caseof abrokenprop-
erty, theneitherthis is repairedby thedaemon,or the task
is terminated(by itself or thedaemon).For thispurposewe
introducethepredicatetask1 property repaired in
Figure31. This predicatereturns 89'*#�, if thedatabaseand
thelock tablematchwrt. to propertyname0 (recallthatwe
havefocusedon task1 thatsnarfspropertyname0).

The new correctnessproperty using this new pred-
icate is shown in Figure 32. The property states
that “in all states, if task1 property broken
holds, then eventually either task1 terminated or
task1 property repaired will hold” .;2;

Even,whenit laterwasconfirmedasanerror, we did not know how
to correctit, andhencea reformulationof thepropertywasstill neededin
orderto avoid therepairsituationto beidentifiedby themodelchecker as
anerror.

#define task1_property_repaired
locks[0].value == db[0]

Figure 31. ABORT predicate

[](task1_property_broken ->
<>(task1_terminated ||

task1_property_repaired))

Figure 32. Re-formalization of ABORT proper ty

4.5.2 Err or Detection

Applying the SPIN model checker to the above property
yieldsanerrortracedemonstrating,thatthepropertyis not
satisfiedin the model. The traceillustratesthe following
sequenceof events.

1. Task 1, Figure 18, starts, and eventually calls
achieve lock property, Figure13. This proce-
durecontainsthetwo lines:

achieve(p,err);
locks[p.name].achieved = true

That is, a call of achieve, which updatesthe
database,and then an assignmentto the achieved
field. In the trace,theachieve procedureis called,
andthenthe taskexecutionis delayed,hence,the as-
signmentto theachieved field is delayed.

2. At this point, the Environment, Figure 23, intro-
ducesan inconsistency in the databasesuchthat the
propertyvalueof propertyname0 becomes0 in the
database,hence,destroys thejustachievedproperty.

3. Thedaemon,Figure30,awakenedby theenvironment
changestartslooking for an inconsistency, but finds
nonesincetheachieved field hasnot beensetyet,
andthe daemonrequiresthis to be 89'�#�, in order for
an inconsistency to be existing, seethe definition of
procedureproperty violated Figure20. Hence,
thedaemondiscoversnothingandgoesto sleepagain.

4. The task from above now assigns 89'�#�, to the
achieved field, andcontinuesasif everythingwas
consistent.

Hence,an inconsistency hasbeenintroduced,but it has
not beendiscoveredby the daemon,andhence,is not re-
paired,neitheris thetaskaborted.

16

4.5.3 Err or Corr ection

A solutionto theproblemis theembeddingof thetwo lines
of codein theachieve lock property procedureinto
a critical section,suchthat updatingthe databaseand the
achieved field is alwaysdonein oneindivisible action.
For thispurposeweintroduceanatomic constructaround
the two lines in the PROMELA model,asshown in Figure
33.

inline achieve_lock_property(this,p,err) ?
TaskId owner;
find_owner(p,owner);
if
:: owner == this ->

atomic ? -- added
achieve(p,err);
locks[p.name].achieved = true@

:: else ->
wait_for_event(this,MEMORY_EVENT,p);

fi@

Figure 33. New achieve lock property

The SPIN modelchecker now certifiesthat the ABORT

propertyin Figure32 is satisfiedin thisnew model.

4.6 Err or � – An Efficiency Problem

During theexaminationof theerror tracesgeneratedby
theverificationsabove,yetafifth errorhasbeendiscovered
in the L ISP code. In the PROMELA modelit concernsthe
processDaemon in Figure22.

It occursthatcheck locks is calledtwice whenever
the daemonhashungafter a call of wait for events,
and then is restartedafter a signal to one of the events
it waits for. That is, when one of these events is
signaled by a call of signal event, Figure 8, the
event counter for that event is incrementedin addition
to the restart of waiting tasks. This meansthat when
the daemonhas executedcheck locks (and perhaps
do automatic recovery) once,thenthetest:

Ev[MEMORY_EVENT].count +
Ev[SNARF_EVENT].count

!=
event_count

will evaluateto 89'�#:, , andhenceanotheriterationof the
loop is begun, re-executingcheck locks. The RA pro-
grammingteamhasconfirmedthisasanerror, althoughone
of low priority.

4.7 A “Daemon–Ready”Flag PerhapsNeeded

In anearlymodel,thetaskswerespawnedwithoutwait-
ing for thedaemonto initialize itself. That leadto thedis-
coveryof anerrorby themodelchecker. Theerrorwasba-
sically thata lock violation couldoccurbeforethedaemon
got to its initial waiting point, which the first time is un-
conditional!; andhencethe daemonwould just ignorethe
violation andcall wait for events. This wasnot con-
sideredan error, becausethe daemonwill alwaysstartbe-
foreeverythingelse.However, thefollowing responsefrom
ErannGat shows thata changeto the L ISP programcould
beneeded.

This would be a problem if the daemonwere
startedlate. However, I don’t think this is a
problemin practicebecauseall the daemonsare
startedlong beforeanything elsehappens. But
this doeshighlight the needfor a mechanismto
insurethatall thedaemonshave reached“steady
state”beforeproceeding.

Hence,we don’t considerthis asa caughterror, but we re-
gardit asanincreasedinsightgivento theRA programming
team.

5 Evaluation by the RA Programming Team

This section contains Erann Gat’s evaluation of our
work. His commentsweregiven during email communi-
cations,whichwerenotoriginally intendedto bepublished.
He,however, laterapprovedtheirpublication.

A first sub–sectioncontainshisresponsesto ourerrorre-
ports.A secondsub–sectioncontainshis responsesto three
generalquestionsposedafterourworkhadbeenterminated.

5.1 The Programmer’sRemarks to
Our Err or Reports

In thissectionwequoteErannGatonhis remarksto our
error reports. That is, for eacherror we discovered,and
which hasbeenexplainedin section4, we quotehis re-
sponsetoourreporttohim. Wepresentthequotationsin the
orderthey appearedin time, althoughthis in certaincases
differsfrom theorderof presentationin section4.

Err or C – RELEASE Property(section4.2):

I think this is a real error. It would only arise if a
taskgetsa timer interrupt in betweenexiting the bodyof
the unwind-protectand enteringthe critical sectionof the

17

release-locks, but I don’t know of any reasonwhy that
shouldnothappenonoccasion.Thisis a particularlyperni-
ciousbug. It arisesonlybecauseyouarein a multi-threaded
environment,and only in very obscure circumstancesthat
are veryunlikely to ariseduring testing. Congratulations!
You havejust convertedmeinto a believer in formal meth-
ods.

Err or � – ABORT Property(section4.5):

Ah, goodpoint. You are correct, this is a bug. I’m im-
pressed! This makes two bugs you guyshavediscovered
through formal methodsthat we almost certainly would
neverhavecaughtanyotherway.

Err or D – ABORT Property(section4.3):

Yep, anotherbug. This one is an instanceof a classic
pattern: not wrappinga conditionalwait-for-eventsinside
a critical section.Thissort of mistake is veryeasyto make
andhappensall the time in our code. Thanksfor catching
thisone!

Err or � – EFFICIENCY Problem(section4.6):

No,it’ sa bug, but sinceit’ s justanefficiencyproblemit’ s
prettylow priority.

Err or E – ABORT Property(section4.4):

Youhave, however, founda (alreadyknown)designflaw.
There canbea significanttimelag betweena propertybe-
ing violatedanda taskbeinginformedof theviolation. The
propertylock daemonsshouldreally residein theproperty
databaseandbetriggeredautomaticallywhenever contra-
dictory informationis asserted.This is on thelist of things
to do.

Question: Is it not thecase,thata taskmight never be
informed?

Ah, good point! I had neglectedto considerthe case
where a new assertionthat violatesa lock happensin the
middle of check-locks. It’ s hard to get out of a single-
threadedmindset! Thanksfor pointingthisout.

Question: But is it anerror?Or is it “just” unexpected?

. . . Seriouslythough, the intent was that taskswould
be notifiedwhenever a locked propertywasviolatedafter
initial achievement.In somecasesthis can be important.
For example, if a pointingconstraint is violatedit mightbe
important to know, even if the constraint is automatically
restored.

5.2 The Programmer’sAnswersto
3 GeneralQuestions

We asked ErannGat threegeneralquestionsaboutthe
modelcheckingeffort we hadcarriedout. Below we quote
hisanswersto eachof them.

Question1:
Did ourwork haveany impactonyourwork?

Answer:
You’vefounda numberof bugsthat I amfairly confident

wouldnot havebeenfoundotherwise. Oneof thebugsre-
vealeda major designflaw (which has not beenresolved
yet). SoI’ d sayyouhavehada substantialimpact.If noth-
ing elseyouhavehelpedusimprovethequalityof our prod-
uctwell beyondwhatweotherwisewouldhaveproduced.

Question2:
How seriousweretheerrorswefound?Any examplesof

whatcouldhavegonewrong?Wouldthey only occurrarely
or beharmless?
Answer:

The errors you found were the sort that would mani-
fest themselvesonly undervery particular setsof circum-
stancesinvolvingprecisetiming, sotheseerrorsrarelyman-
ifest themselves.This makesthemboth more and lessse-
rious – lessseriousbecausethey are unlikely to actually
occur, more seriousbecauseif they occur at all they are
likely to occur for the first time underactual flight condi-
tions. Theoverall architecture is designedto be robust in
thefaceof such errors (wehavemultiplelayersof software
redundancy)so it is unlikely that theseerrors would have
causedproblemsmore seriousthanlost time, but onenever
knows.Everybug is potentiallya mission-killer, andgener-
ally theonesthat dokill themissiondo soin waysthat one
never imaginesuntil it happens.

Question3:
Whatwas/isyour generalattitudetowardsformal meth-

ods,beforeandafterthisexercise?
Answer:

I usedto beveryskepticalof theutility of formal meth-
ods. This is at leastpartly dueto thefact that I hada mis-
conceptionaboutthe way in which formal methodswould
be used. I thoughtthat formal-methodsadvocateswanted
to “pr ovecorrectness”of software systems.I believed(and
still believe) that that is impossible. However, what you
havebeendoing is finding placeswhere software violates
designassumptions,which is not thesamethingasproving
correctness.To meyouhavedemonstratedtheutility of this
approach beyondany question. I would like verymuch to
learnmoreaboutyourwork.

6 Conclusion

In this paperthe resultsof verifying the RA Executive
have beendescribed,andwe shallnow try to presentsome
of ourderivedreflections.

18

6.1 Analysisof the Effort

Themajoreffort without doubtwent into themodeling,
hencein obtainingaPROMELA programfrom theL ISP pro-
gram. This modelingactivity canbe regardedasconsist-
ing of threesub-activities: comprehension, abstractionand
translation, seeFigure34. By abstractionwe meantheac-
tivity of reducingtheprogramto becomea finite statesys-
tem,smallenoughfor efficient verification. This taskcon-
sistsof removing irrelevant code,replacinginfinite types
with interval types,limiting the numberof tasksrunning,
etc. By translationwe meanthe activity of writing the
actualPROMELA code,for examplemappingthe property
lock list in theL ISP programinto anarrayrepresentationin
the PROMELA program. A pre-requisitefor modelingis a
certaincomprehensionof thesourceprogram,theL ISP pro-
gramin thiscase.Thatis, anunderstandingof theprogram
thatmakesit possibleto performgoodabstractions.

modeling

LISP program

PROMELA program

translation

abstraction

comprehension

Figure 34. Modeling = comprehension n ab-
straction n translation

The comprehensionactivity was clearly the hardest,
sincethe L ISP programusedmany macro-definitions,and
sincewe did not have directaccessto theprogrammerfor
explanations. The translationphasewas also non-trivial
dueto the strengthof the L ISP languagecomparedto the
weaker PROMELA language. Basically L ISP is probably
oneof themostpowerful languagesaroundsinceit provides
a combinationof untypedfunctionalprogrammingandim-
perativeobjectorientedprogramming.Hence,themapping
oftenresultedin code“blow up”. Interestinglyenough,the
abstraction activity wasthe easiest.Oncea pieceof code
wasunderstood,decidingwhatto keepandwhatto remove
wasoftenquiteclear.

Of course,thenotionof translationis only relevantin the
situationwheremodelcheckingis appliedto analreadyex-
istingprogram,aswasthecasehere.Whenmodelchecking
is insteadappliedduring the earlydesignphases,beforea
programis written,modelingbecomesmuchmorelike tra-
ditionalprogrammingactivity.

The modeling effort took 2 peopleabout 6–8 weeks.
Theverificationeffort wasin contrastsmall,abouta week.
Oncethe modelwasformulated,it waseasyto formulate
thepropertiesto beverified,eitherin termsof assertionsor
in termsof LTL formulae. Themodelchecker found the5
errorsright away.

6.2 LanguageConsiderations

PROMELA waschosenasthemodelinglanguagedueto
its supportof dynamicprocesscreation.RA tasksarecre-
atedand deleteddynamicallyover time, and we initially
consideredthisasbeingimportant.As it turnsouthowever,
ourverificationsonly involvea staticnumberof processes.

The PROMELA languageseenas a notationrepresents
verymuchthestateof theart in modelcheckinglanguages,
andis acceptablefor the problem. However, a few highly
recommendedimprovementsfor the languagecameout as
a resultof ourefforts,asdocumentedin [4]. Someof these
recommendationshave beenadoptedin the latestversion
of SPIN, inspiredby our work during several email com-
municationswith GerardHolzmann.Firstof all, thelackof
proceduralabstractionwasfelt asacleardrawback.Macros
couldbeused,but they don’t very well supportlocal vari-
ablesnor parametertype checking(not to mentiontyping
“ o ” at theendof eachmacrodefinitionline). Furthermore,
the SPIN tool setdoesnot supportmacrosvery well, since
the type checker as well as the simulatorcannotrefer to
lines within macros. This meansthat when for example
simulatingtheresultof averification,onecannotreally fol-
low what goeson, andonehasto examineinsteadthe er-
ror tracein anadhocway (loadingit into emacsfor exam-
ple). Theadvantageof macrosis that thereis no overhead
in usingthem:macrocallsaresimply expandedout before
themodelchecker is applied.TheseobservationsleadGer-
ard Holzmannto incorporatethe “inline” proceduresinto
PROMELA asannouncedin the SPIN newsletter22 (April
1998).Also nestedatomicconstructswereregardeduseful,
andconsequentlyincorporatedinto PROMELA. Still on the
wish list arelocal variables,enumeratedtypes,type equa-
tionsandconstantdefinitions.Generally, acompleteavoid-
anceof macrodefinitionswouldbepreferable.

In [7] it is describedhow procedurescanbemodeledin
termsof processesthatarespawned,andwhich communi-
catetheir resultbackon a channel.That is, a procedureis
modeledasaprocess,andeachtimetheprocedureis called,

19

sucha processis spawned. We tried this solution, but it
turnedout to causetwo problems. First of all, SPIN had
a limit on the numberof processesallowed to be created,
andthis limit (D���p) wasquickly reachedin aprogramusing
a lot of proceduralabstraction.The problemwas, that in
SPIN processeswerenot killed whenthey terminated.Due
to anemailconversationwith GerardHolzmann,SPIN was
changedsuchthatprocesseswerekilled andremovedfrom
the memoryupon termination. However, this did not re-
movethesecondproblem,thatmodelingprocedurecallsas
processspawningis expensive,andslowsdown verification
considerably. Whenwe went over to usingmacros,veri-
ficationsterminatedan orderof magnitudefaster. A third
solutionis to modeleachprocedureby a process,which is
spawnedonly once,andwhereeachprocedurecall thenis
modeledsolelyby acommunicationto thatprocess.Hence,
thereis only one(C) spawning for eachproceduredeclara-
tion, in contrastto eachprocedurecall assuggestedin [7].
We havenotexperimentedwith thissolution.

6.3 Tool Considerations

Even though manual translationwas regardedharder
thanmanualabstraction,we believe that translationcanbe
mostlyfully automated,atleastfor traditionalprogramming
languagessuchas JAVA (in contrastto L ISP) whereasab-
stractionrequiressomehumanguidedinteractive tool sup-
port. Hence,theaboveexperiencessuggestthatthetransla-
tion activity shouldbeautomatedasmuchaspossible;per-
hapsa model checker could even be “hardwired” for the
programminglanguage(therebyavoidingtheindirecttrans-
lation into a modelcheckinglanguage).Abstraction,how-
ever, is not likely to beeasilyautomated,andwe therefore
suggestan interactive tool, an abstraction–workbench, for
supportingsuchabstractions.With sucha tool, onecould
for exampleannotatea completeprogramwith abstraction
information, suchas: Puttinga maximalboundon number
of iterationsin a loop, Limiting an infinite(or big) typeto a
finite (andsmall)subtype, Changingthetypeof a variable,
and changingall relatedoperations, or Omitting, replac-
ing, addingcode. Also moreautomatedcapabilitiescould
beconsideredsuchasfor exampleprogramslicing.

We imaginethat thetool will allow theuserto make ar-
bitrary(soundaswell asunsound)modificationsto hispro-
gram, and not just soundmodificationsthat are “correct”
in somesense.In otherwords,it is importantto note,that
wehavenotprovedtheabstractedPROMELA programto be
“correct” wrt. to the L ISP program. That is, we have not
shown that if a propertyholds in the PROMELA program
it alsoholdsin the L ISP program.Suchabstractionproofs
areof courseof big interest,andcomputeraidedsupport
for suchcorrectabstractionsis obviously desirable.Some

abstractionscanbedonefully automatically, suchasfor ex-
ampleprogramslicing. More sophisticatedapproachesto
abstractionhavebeenattemptedbasedon theoremproving,
wherea theoremprover is usedto formulateabstractions
andprovethemcorrect,seefor example[5] [6]. Somework
tries to automatethesemoresophisticatedabstractions[1]
[2] [3]. The PVS interactive theoremprover [8] hasa gen-
eralhigherorderlogic, allowing specificationandverifica-
tion of generalinfinite statetransitionsystems.Particularly
interestingis thecurrenteffort toeffectively integratemodel
checkinginto PVS (asdescribedin [8]).

In general,suchproofsare,however, veryhardto create,
andwe believe, that just theabove mentionedabstraction–
workbenchcould be extremelyuseful,althoughsimplerin
purpose.Interestinglyenoughthis simplerapproachis not
evenyet stateof theart. We believe thata decentpurpose
of applyingmodelcheckingis to find errorsratherthanto
provecorrectness,andfor thispurposesuchasimplertool is
useful.Suchatool shouldin additionsupportstrongversion
control,sincesuchannotationsmaybechangedquiteoften
in theearlyphasesof theverificationactivity.

6.4 ClosingRemarks

We regardtheexerciseashighly successfulin thesense
that we foundfive errorsquite easily, oncethe modelwas
constructed.The errorswereall classicalconcurrency re-
latederrors,whereunforeseeninter-leavingsbetweenpro-
cessescausedundesiredeventsto happen.Accordingto the
RA programmingteam,theeffort hashada major impact,
locatingerrorsthat would probablynot have beenlocated
otherwise,andidentifyinga majordesignflaw.

Themajoreffort consistedin building themodel,but we
claimthatthisactivity canbemademuchmoreefficientby
providing translationand abstractiontools. Furthermore,
the betterthe modelinglanguage,the easierthe modeling.
Especiallyif one considersusing a model checker in the
earlystagesof systemsdesign,beforeprogrammingis be-
gun,a nice notationis absolutelya must. Theseconsider-
ationshave definedthe researchagendawithin the AUTO-
MATED SOFTWARE ENGINEERING groupat NASA Ames.
We believe that verification techniquesshouldbe applied
to the languagesin use,andhenceour currentefforts have
beendirectedtowardsJAVA andUML. As amorelongterm
goalwe have interestin applyingverificationtechniquesto
higherlevel languagesaswell.

References

[1] S. Bensalem,Y. Lakhnech,and S. Owre. ComputingAb-
stractionsof Infinite StateSystemsCompositionallyandAu-
tomatically. In Computer-AidedVerification,CAV’98, number

20

1427in LectureNotesin ComputerScience,pages319–331.
Springer-Verlag,1998.

[2] S.Bensalem,Y. Lakhnech,andS.Owre. InVeSt: A Tool for
theVerificationof Invariants.In Computer-AidedVerification,
CAV’98, number1427in LectureNotesin ComputerScience,
pages505–510.Springer-Verlag,1998.

[3] S. Graf andH. Saidi. Constructionof AbstractStateGraphs
with PVS. In Computer-AidedVerification,CAV’97, Lecture
Notesin ComputerScience.Springer-Verlag,1997.

[4] K. Havelund,M. Lowry, andJ. Penix. FormalAnalysisof a
SpaceCraft ControllerusingSPIN. Technicalreport,NASA
AmesResearchCenter, California,1997.

[5] K. HavelundandN. Shankar. Experimentsin TheoremProv-
ing andModel Checkingfor ProtocolVerification. In M.-C.
GaudelandJ. Woodcock,editors,FME’96: Industrial Bene-
fit andAdvancesin FormalMethods, volume1051of Lecture
Notesin ComputerScience, pages662–681.Springer–Verlag,
1996.

[6] K. Havelund and N. Shankar. A MechanizedRefinement
Proof for a GarbageCollector. Formal Aspectsof Comput-
ing, 1998.Submittedfor review.

[7] G. Holzmann.TheDesignandValidation of ComputerPro-
tocols. PrenticeHall, 1991.

[8] S. Owre, S. Rajan,J. Rushby, N. Shankar, and M. Srivas.
PVS: CombiningSpecification,Proof Checking,andModel
Checking.In R.Alur andT. A. Henzinger, editors,Computer-
AidedVerification,CAV ’96, number1102in LectureNotes
in ComputerScience,pages411–414,New Brunswick,NJ,
July/August1996.Springer-Verlag.

[9] B. Pell,E.Gat,R.Keesing,N. Muscettola,andB. Smith.Plan
Executionfor AutonomousSpacecrafts.In Proceedingsof the
1997InternationalJointConferenceonArtificial Intelligence,
1997.

21

